

Courses » Industrial Instrumentation

Announcements

Course

Forum

Progress Mentor

Unit 9 - Week 8

Cou	rse outline
How t portal	o access the
Week	1
Week	2
Week	3
Week	4
Week	5
Week	6
Week	7
Week	8
	cture 20: Pressure
	cture 21: Low essure Sensors
Ass Pre pre	iz : Week 8 signment on essure and low- essure asurements
	ek 8 Assignment ution
Week	9
Week	10
Week	11
Week	12

Week 8 Assignment on Pressure and low-pressure Measurements

1) 2 points

A well-type manometer, shown in Figure 1, is used to measure differential air pressure ($P_1 - P$). The manometric liquid has density (ρ_m) of 1000 kg/m³. The ratio of well diameter (α_w) to tu diameter (α_t) is 10. If a scale of simple U-tube manometer is used for this system, then find a magnitude of percentage error in measurement. (Assume, density of the fluid over manomet fluid $<< \rho_m$)

(In well-type manometer, change in liquid height ('h', as in Figure 1) due to pressure differen in the tube is only measured. That will be the source of error.)

(**Hint:** For a U-tube manometer, $P_1 - P_2 = h \times \rho m \times g$. Find out the expression of $(P_1 - P_2)$ for we type manometer based on α_w and α_t . Then find the error.)

- a) 0.1 %
- o b) 1 %
- o) 10 %
- d) None of these

Accepted Answers:

b) 1 %

3 points

The tube of the above well-type manometer is inclined at an angle 30° with vertical axis. Fin out the percentage change (increase or decrease) in 'h' (length of liquid in the tube) compare to a well-type manometer for measuring same differential pressure.

a) 13.4 %
b) 14.3 %
c) 15.5 %
d) 16.3 %

Accepted Answers:

c) 15.5 %

3)

A pressure gauge is designed using a diaphragm and LVDT arrangement. The LVDT core i connected to the centre point of deflection of the diaphragm. The diaphragm has the followin characteristics: Poisson's ratio (v): 0.25, density of diaphragm material: 7000 kg/m³, Modulus c elasticity for the diaphragm material (E) = 2×10^{11} Pa, radius of diaphragm (R) 10 cm. Calculat diaphragm thickness 't' such that non-linearity is 1 %. Assume, maximum pressure is 1 MPa.

- a) 4.2 mm
 b) 8.5 mm
 c) 4.97 mm
 d) None of these
- Accepted Answers:

c) 4.97 mm

4) 3 points

In problem 3, calculate the resolution of the system, if the LVDT has sensitivity of 0.5 V/mm an the output is measured using a millivoltmeter, capable of measuring minimum of 0.1 mV.

a) 1385.4 N/m²
 b) 385.1 N/m²
 c) 168.9 N/m²

d) 281.8 N/m²

Accepted Answers:

d) 281.8 N/m²

5) 5 points

In the Figure 2, four strain gauges are placed over a diaphragm. The diaphragm has t following specifications:

Figure 2

 r_t = 0.02 m, r_r = 0.08 m, D = 0.2 m, Poisson's ratio 0.3, E_{ex} = 10 V, Gauge resistance = 100 Ω , Gaufactor (λ) = 2, diaphragm density = 7000 kg/r Modulus of elasticity for the diaphragm material = 2×10^{11} Pa, sensitivity = 10^{-4} mV/Pa.

Find diaphragm thickness 't'.

(**Hint:** (i) Evaluate expression for radial stress tangential stress S_t for both r_r and r_t . (ii) Evaluate expression for radial strain (ϵ_r) and tangential strain (ϵ_t). (iii) Evaluate expression for resistances of t

four strain gauges. (iv) Finally calculate 't' from output voltage e_0 of Wheatstone bridge, if t strain gauges are connected in the bridge.)

a) 12.7 mmb) 1.27 mm

3 points

c) 2.54 mm d) 1.79 mm

Accepted Answers:

d) 1.79 mm

6) 2 points

A McLeod gauge has a bulb of volume 100 cm 3 . The diameter of the capillary is 1 mm. Calculat the gauge pressure indicated by the capillary tube when a pressure of 100 μ m of Hg is applied.

a) 0.08 m

b) 0.113 m

o) 0.183 m

d) None of these

Accepted Answers:

b) 0.113 m

7) 2 points

For an Ionization gauge, pressure of the gas in the vessel is 10^{-11} torr and sensitivity is 50/torr. 0.01 μ A ion current is generated in the vessel, calculate the electron current.

a) 20 A

b) 20 mA

0 c) 2 A

d) 200 mA

Accepted Answers:

a) 20 A

8) 4 points

The following bridge circuit is used for measurement of low pressure by Pirani gaug Resistance of the filament (R_P) changes with applied pressure, following the relation, $R_P = R_0 \times (1-k \times P)$, where k is a sensitivity constant, P is applied pressure, R_0 is nominal resistant under no pressure. (Null-deflection measurement done using deflection-galvanometer 'D')

Assume range of P is 10^{-3} to 1 torr. Find (i) maximum value of k, if allowable nonlinearity in R' P relation is 1 %. Also find (ii) value of R' for measuring maximum pressure, using the abovalue of k (Assume, $R_0 = 1 \text{ k}\Omega$).

Figure 3

 \bigcirc a) (i) 0.02/Torr; (ii) 485 Ω

b) (i) 0.01/Torr; (ii) 4850 Ω

 \odot c) (i) 0.01/Torr; (ii) 485 Ω

d) None of these

Accepted Answers:

a) (i) 0.02/Torr; (ii) 485 Ω

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

NASSCOM

Funded by

Government of India Ministry of Human Resource Development