Courses » Industrial Instrumentation Announcements Course Forum Progress Mentor # Unit 9 - Week 8 | Cou | rse outline | |-------------------|---| | How t
portal | o access the | | Week | 1 | | Week | 2 | | Week | 3 | | Week | 4 | | Week | 5 | | Week | 6 | | Week | 7 | | Week | 8 | | | cture 20: Pressure | | | cture 21: Low
essure Sensors | | Ass
Pre
pre | iz : Week 8 signment on essure and low- essure asurements | | | ek 8 Assignment
ution | | Week | 9 | | Week | 10 | | Week | 11 | | Week | 12 | # **Week 8 Assignment on Pressure and low-pressure Measurements** 1) 2 points A well-type manometer, shown in Figure 1, is used to measure differential air pressure ($P_1 - P$). The manometric liquid has density (ρ_m) of 1000 kg/m³. The ratio of well diameter (α_w) to tu diameter (α_t) is 10. If a scale of simple U-tube manometer is used for this system, then find a magnitude of percentage error in measurement. (Assume, density of the fluid over manomet fluid $<< \rho_m$) (In well-type manometer, change in liquid height ('h', as in Figure 1) due to pressure differen in the tube is only measured. That will be the source of error.) (**Hint:** For a U-tube manometer, $P_1 - P_2 = h \times \rho m \times g$. Find out the expression of $(P_1 - P_2)$ for we type manometer based on α_w and α_t . Then find the error.) - a) 0.1 % - o b) 1 % - o) 10 % - d) None of these **Accepted Answers:** b) 1 % 3 points The tube of the above well-type manometer is inclined at an angle 30° with vertical axis. Fin out the percentage change (increase or decrease) in 'h' (length of liquid in the tube) compare to a well-type manometer for measuring same differential pressure. a) 13.4 % b) 14.3 % c) 15.5 % d) 16.3 % Accepted Answers: c) 15.5 % 3) A pressure gauge is designed using a diaphragm and LVDT arrangement. The LVDT core i connected to the centre point of deflection of the diaphragm. The diaphragm has the followin characteristics: Poisson's ratio (v): 0.25, density of diaphragm material: 7000 kg/m³, Modulus c elasticity for the diaphragm material (E) = 2×10^{11} Pa, radius of diaphragm (R) 10 cm. Calculat diaphragm thickness 't' such that non-linearity is 1 %. Assume, maximum pressure is 1 MPa. - a) 4.2 mm b) 8.5 mm c) 4.97 mm d) None of these - Accepted Answers: c) 4.97 mm 4) 3 points In problem 3, calculate the resolution of the system, if the LVDT has sensitivity of 0.5 V/mm an the output is measured using a millivoltmeter, capable of measuring minimum of 0.1 mV. a) 1385.4 N/m² b) 385.1 N/m² c) 168.9 N/m² d) 281.8 N/m² Accepted Answers: d) 281.8 N/m² 5) 5 points In the Figure 2, four strain gauges are placed over a diaphragm. The diaphragm has t following specifications: Figure 2 r_t = 0.02 m, r_r = 0.08 m, D = 0.2 m, Poisson's ratio 0.3, E_{ex} = 10 V, Gauge resistance = 100 Ω , Gaufactor (λ) = 2, diaphragm density = 7000 kg/r Modulus of elasticity for the diaphragm material = 2×10^{11} Pa, sensitivity = 10^{-4} mV/Pa. Find diaphragm thickness 't'. (**Hint:** (i) Evaluate expression for radial stress tangential stress S_t for both r_r and r_t . (ii) Evaluate expression for radial strain (ϵ_r) and tangential strain (ϵ_t). (iii) Evaluate expression for resistances of t four strain gauges. (iv) Finally calculate 't' from output voltage e_0 of Wheatstone bridge, if t strain gauges are connected in the bridge.) a) 12.7 mmb) 1.27 mm 3 points c) 2.54 mm d) 1.79 mm #### **Accepted Answers:** d) 1.79 mm 6) 2 points A McLeod gauge has a bulb of volume 100 cm 3 . The diameter of the capillary is 1 mm. Calculat the gauge pressure indicated by the capillary tube when a pressure of 100 μ m of Hg is applied. a) 0.08 m b) 0.113 m o) 0.183 m d) None of these ## **Accepted Answers:** b) 0.113 m 7) 2 points For an Ionization gauge, pressure of the gas in the vessel is 10^{-11} torr and sensitivity is 50/torr. 0.01 μ A ion current is generated in the vessel, calculate the electron current. a) 20 A b) 20 mA 0 c) 2 A d) 200 mA ### **Accepted Answers:** a) 20 A 8) 4 points The following bridge circuit is used for measurement of low pressure by Pirani gaug Resistance of the filament (R_P) changes with applied pressure, following the relation, $R_P = R_0 \times (1-k \times P)$, where k is a sensitivity constant, P is applied pressure, R_0 is nominal resistant under no pressure. (Null-deflection measurement done using deflection-galvanometer 'D') Assume range of P is 10^{-3} to 1 torr. Find (i) maximum value of k, if allowable nonlinearity in R' P relation is 1 %. Also find (ii) value of R' for measuring maximum pressure, using the abovalue of k (Assume, $R_0 = 1 \text{ k}\Omega$). Figure 3 \bigcirc a) (i) 0.02/Torr; (ii) 485 Ω b) (i) 0.01/Torr; (ii) 4850 Ω \odot c) (i) 0.01/Torr; (ii) 485 Ω d) None of these Accepted Answers: a) (i) 0.02/Torr; (ii) 485 Ω Previous Page End © 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - A project of In association with NASSCOM Funded by Government of India Ministry of Human Resource Development